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ABSTRACT
One pressing issue for unmanned and
self-driving vehicles is navigating off-road
terrain. It is hard to get a clear view of the
area around the vehicle, making it even
more difficult to decide which direction to
travel in. This issue plagues researchers
looking for locations to land rovers on other
planets. We will create an Al that, using
satellite imagery, can find a safe path
through off-road terrain; both on earth, and
elsewhere. The Al model will predict areas
of the image that are “travelable,” and a
pathfinding algorithm will be used to link
these areas together and find viable paths.
The paths produced can be connected to
form a network of travelable land. This
network of travelable land can be used to
find routes from one node to another. In the
case of Mars, identifying nodes with many
different paths will identify potentially good
places to land rover missions, or even settler
missions. The training set will be
constructed from known areas that have
been traveled by rovers such as Curiosity
and Pathfinder. Mosaics of these areas have
been produced with a spatial resolution of
about 25 centimeters/pixel. Unfortunately,
most of Mars, like many other planets, does
not have satellite imagery available with
spatial resolution better than about 20
meters/pixel. This solution has a high
potential for technology transfer and has
uses both on other planets, as well as with

autonomous and self-driving vehicles here
on Earth.

I. INTRODUCTION

One pressing issue for vehicles is
navigating off-road terrain. On Earth, it is
hard to get a clear view of the area around
the vehicle, making it even more difficult to
decide which direction to travel in.
Elsewhere, this issue plagues researchers
looking for locations to land rovers on other
planets. We will create an Al that, using
satellite imagery, can find a safe path
through off road terrain.

Our plan is to use existing path data
from sources such as the Curiosity Rover to
train an Al to find clear paths using satellite
imagery. This problem has a high potential
for technology transfer, and can be used
both on other planets, as well as with
autonomous vehicles here on Earth.

This work is important because it can
be expanded to a wide range of applications.
It will add capabilities to unmanned or
self-driving ground vehicles. It will also
identify traveling paths for rovers on other
planets. There could also be many other
relevant applications to this Al

II. BACKGROUND
Selecting a landing site on another
planet is a hard and important problem. On
top of trying to find a site with a lot of



scientific opportunities, we must find sites
with clear ground. Rovers do not fare well
on surfaces with many small rocks, or
surfaces with great slopes. Figure 1 shows
the significant damage the Curiosity Rover’s
wheels have incurred from driving over
rocks.

Figure 1: Damage shown on Curiosity rover
wheels due to small rocks. [3]

We have very limited data available
about the surface of proposed landing sites.
One of our main assets in selecting such
sites is the Mars Reconnaissance Orbiter.
This satellite orbits Mars, and scans images
of the surface with the Compact
Reconnaissance Imaging Spectrometer for
Mars (CRISM).

The images taken by the CRISM
spectrometer are randomly sampled all over
the surface of Mars [1] . The only problem
with these images is that they only are
around 15-20 meters/pixel. Consequently,
these images are only able to provide a
general picture of the land, but there is no
way to see small rocks with these images.

A technique commonly used when
finalizing the decision on a landing site is

the production of what is called an
orthophoto. This is formed by using image
processing techniques to merge many
overlapping stereo images. These images are
timely and expensive to produce because of
the amount of separate scans required to
produce them. An example orthophoto is
shown in Figure 2.

Figure 2: Curiosity Rover landing site
orthophoto. Northwestern Gale Crater.
Resolution = 25 centimeters/pixel. [2]

The expensive nature of producing
images where we can see small obstructions
gives us motivation to look elsewhere for
solutions. This paper will discuss using Al
to determine travelable vs. untravelable land
by employing spectral unmixing of
hyperspectral images.

III. RELATED WORK
There is a fair amount of related
work with image pathfinding. Most work



involves using aerial images, and image
processing techniques to achieve a binary
classification of travelable and untravelable
land. From here, common pathfinding
algorithms are used to traverse the resultant
graph produced by the binary image.

Comparison of Aerial Imagery and Satellite
Imagery for Autonomous Vehicle Path
Planning

Robert Hudjakov and Mart Tamre
compare their path planning algorithms
between satellite imagery and aerial
imagery. Their method is based on a
convolutional neural network, which takes
an image input and classifies it into a few
groups. The output is an image which only
has four different possible values: houses,
grass, debris, and roads.

Splitting the image into these
different groups allows the road portion of
the image to be turned into a binary mask.
This road matrix can then be used as the
basis for a pathfinding algorithm. From this
point, the solution becomes a relatively
simple pathfinding problem. [5]

Cross-Country Path Finding using PSO and
BDO

This paper is focused on finding
paths where there are no roads. However, it
still uses a similar method to the previous
paper as far as finding paths which can be
travelled. The paper uses Particle Swarm
Optimization (PSO) to compute a threshold
value, and subsequently threshold the input
image into two classes: clear vs. obstructed
land. After refining this image using various
image processing techniques, a path can be

planned using Biogeography  Based
Optimization (BBO).

We can see that this pathfinding
technique works in a similar way to the
previous. First it distinguishes the travelable
land from the untravelable land, and then it
uses some pathfinding algorithm to find
paths through this travelable land. [4]

IV. MODEL OF SOLUTION

The model is based around two main
functions: the Sobel Gradient, and the A*
Pathfinding Algorithm. The high-level flow
of the program can be seen in Figure 5.
Many supportive functions are used to help
tie together the gradient and pathfinding
functions. There are also some functions
used to help achieve better results from the
gradient calculation step.

Before taking the gradient, local
noise is reduced by smoothing the image.
This smoothing process decreases the
amount of noise in smooth, flat land areas of
the images. Smoothing is executed using
Non-Local Means Denoising [6]. The
difference is slight to the human eye, but can
be seen in the zoomed-in image comparison
in Figure 3.

The gradient is a core function of
this solution because it is the way the
program distinguishes between travelable
and untravelable land. The gradient is found
using the sobel operator. This is a
convolutional method which calculates the
gradient based on the derivative of the
image. The derivative is calculated in the x
and y directions independently, and then
combined together by simply adding the
resultant matrices. Finally, a binary image is



created by thresholding the values at each
individual pixel. Anything below the
threshold value will become “travelable”
(value of 0) in the binary image.
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Figure 3: Image before and after
“smoothing” process. Zoomed in for closer
inspection.

After calculating the gradient, simple
image processing techniques are used to
enhance the produced binary image. Dilation
and erosion help join together fragmented
areas of untravelable land. Dilation grows
areas that are a ‘1’ in the image by ‘OR’ing
a 3 by 3 matrix of ones across all ‘1’ values
in the image. Erosion does the exact
opposite, shrinking the area. The net effect
is that most isolated areas in close proximity
to each other are joined together,
theoretically resulting in no external
boundary change. This can be seen in Figure

Figure 4: Before and after enhancing binary
image.
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Figure 5: High-level routine for satellite
pathfinding code.

The A* Pathfinding Algorithm is
being used to traverse the resultant graph
and find the shortest path between given
points. This algorithm iteratively extends the
current tree of routes by calculating the
projected lowest cost of extending the path
to the endpoint. This ensures a relatively



quick runtime. To implement the A*
Pathfinding Algorithm in our project code,
we used open source python files from
programmer Atsushi Sakai [7].

V. RESULTS

This algorithm was tested on 20
different 256x256 images of the Martian
surface. The results were variable depending
on the contrast of the image. Similar images
to the calibrated test images fared well in
testing. These images had their terrain
features detected properly by the gradient
algorithm. However, images that were
higher or lower contrast had different
results.

Figure 6: Visualization of A* Pathfinding
algorithm. Blue pixels are iterated sites. Red
line is the calculated best path.

The main variability in results relied
on honing in the gradient threshold to form
the binary mask. This was originally done
through iterative testing. Values were

tweaked and then the gradient function was
re-tested multiple times. This helped achieve
accurate results. Before expanding testing to
multiple images, this process worked well,
unfortunately, this process must be re-done
when using new images with contrasts than
the original image.

One issue with the resulting binary
image is the open spaces the erosion has
created. A few distinct rectangular holes can
be seen in the middle of the mountain range
in Figure 6. One improvement that could be
made is filling in these holes, so no start or
end node could be accidentally placed there.

Figure 7: Example of original image before
preprocessing. Same image used for
visualization in Figure 6.

VI. FURTHER WORK
Further work will be carried out on
this program to fix some of the issues, as
well as add greater capability. The first work
that will be done is to try to normalize the
contrast of the input image to achieve more



reliable results with the gradient calculation
function.

We can attempt to normalize the
contrast by generating a color balance map
of an original test image. This will be an
image for which the values of the gradient
function as well as the dilation and erosion
functions are calibrated. In the input, a
function will be created which changes the
contrast by re-scaling the brightest white and
darkest black pixels. The rest of the pixels
will be scaled along this new range of
values.
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Figure 8: Photo-geologic map of Jezero
Crater. The blue circle is the main mission
area for the Perseverance Rover.

We will also increase the capability
of this program by using hyperspectral
signatures of low-spatial resolution images
for pixel-by-pixel detection of rocky
“untravelable” terrain. These rocky terrain

pixels will be added to the binary image of
untravelable land.

This will be carried out by
overlaying low-resolution images onto
produced orthophotos with corresponding
maps. Photo-geologic maps are produced
before each NASA rover landing. The map
featured in Figure 8 is an example of one.
Because they contain information about the
surface material composition, these maps
can be quickly transitioned into
travelable/untravelable binary classification
maps.

Geographical features can be used to
align these maps with the lower-resolution
satellite images. This will give us an
accurate training set to use to train an
artificial neural network which hyperspectral
signals can be traveled across.

Finally, this produced neural network
can be used to classify the pixels in new
images. The result will be a second masked
image which can be combined with the first
using a simple ‘OR’ operation. This will
allow the program to avoid the rocky terrain
type previously mentioned.
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