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Selecting Library Endmembers for Spectral Unmixing Using

I. INTRODUCTION

Spectral unmixing allows us to find out
what type of materials are in a pixel by
comparing its spectral signature to known
pixels’ signatures. This is mainly useful for
hyperspectral images because of the vast number
of spectral bands we can compare.

Spectral unmixing uses a library of
known spectral signals L, which it compares
against a selected unknown signal. The
algorithm returns an “abundance vector,” which
consists of the predicted amount of each library
element in the unknown pixel.

In this paper, we will try to see how to
find the best signals to represent each element in
our signal library. Library endmembers are often
selected by hand. We will explore the use of
k-means clustering to select our signals.

II. HAND-SELECTION OF ENDMEMBERS

Hand-selection of endmembers is
problematic for many reasons. It is hard to find a
pure pixel that contains only one material.
Because of the large spatial area of pixels from
satellite images, a given pixel may contain
materials/objects that are unknown to the user.
Therefore, the pixel may not be representative of
the class that the user is gathering data for.

For example, Figure 1 shows the
spectral signatures of four different selections
from the same parking lot in an image. Pixels 1,
2, and 4 seem to have very similar spectral
signals, but the third pixel is noticeably
different. This could be caused by something
like a puddle, dirt patch, or shopping cart in the
pixel that we cannot see.

To attempt to mitigate this issue, we will
begin by taking the average vector of multiple
selections. This will help to filter out the noise
from unseen objects in our selection, and help to
produce a spectral signature that is more
representative of its intended class of
material/object.
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Figure 1: Spectral signatures of four different
pixels from the same parking lot in the same

image.

II. AVERAGING MULTIPLE SELECTIONS

To find the average vector of multiple
spectral signatures, we will simply create a new
vector using the pointwise average of all
selections at each wavelength.

Implementing this averaging process in
our library endmember selection process
decreases the effects of picking a bad pixel
(shown in Figure 2). Figure 3 shows the results
of spectral unmixing using a single selection
library and an averaged selection library.
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Figure 2: Average vector of spectral signals
from Figure 1.

Abundance Values

Library | Road | Trees | Grass | Roof

Road | Single 0983 |0 0.008 : 0
Average |2.585(0.021:0 0.084
Single 0 091410 0
Tree
Average |0 7.706 | O 0
Single 0.074 : 0.040 | 0.831 | 0.009
Grass
Average |0 0.866 | 3.158 | 0
Single 0.021 {1 0 0 0.981
Roof
Average |0 0 0 4.183

Figure 3: Spectral unmixing results with single
library selections vs. averaged library selections.

Figure 3 shows the results of unmixing
pixels of each class (road, tree, etc.) using the
“Isqnonneg” command in Matlab. The results
with two different libraries are shown: A library
that is a single pixel selection and a library that
contains an average of multiple selections.

Furthermore, this process allows the
user to select endmembers they deem to be of
the same class that are slightly different. This
allows the user to create more generalized
spectral signals for their desired classes of
materials.

This was done in the averaged library
from Figure 3 for the “road” classification.
Pixels were selected from the parking lot, the
highway, as well as neighborhood roads. These
types of pavement are often slightly different,
and averaging their spectral signals allows us to
classify them all as the same category.
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Figure 4: Band #123 of the hyperspectral
image used in tests. This image has 162 total
bands after removal of the noisy water
absorption bands.

1. USING K-MEANS CLUSTERING

We will now attempt to implement an
unsupervised version of this selection process by
using k-means clustering to find classes of
endmembers. If k-means clustering will be able
to select similar classes for us, we can further
generalize the signals of our endmembers.

The signals we put in our library will
simply be the average of all the pixels in each
cluster. The user will have to determine the
number of clusters they want, and then look at
the clusters to figure out which material they
represent.

One trick that helped the k-means
algorithm select more relevant points was
increasing the number of clusters to at least one
more than the desired library size. This reduced



the amount of outliers the clustering algorithm
attempts to include in each of the classes.

IV. RESULTS

To begin, the spectral signatures that our
k-means clustering algorithm averaged out to
look very similar to the averaged selection
endmembers. This is a good sign that we will
have a successful unmixing. Three libraries are
shown in Figure 5. The multiple hand-selection
averaged library, the library that was produced
using our k-means clustering algorithm, and also
a library that averages the pixels in the
ground-truth image similarly to our clustering
algorithm.

To  determine  whether  k-means
clustering was successful in finding endmembers
that accurately represented the true classes, we
calculated the percent error for each band of
each of the four library endmembers, and
averaged them.
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Figure 5: Side-by-side: multiple selection averaged
library, k-means clustering library, and averaged
ground truth library.

Overall, we had a percent error of 23%.
This is not terrible but it isn’t great. Upon closer
inspection, we noticed that the algorithm is not
performing well for the road and roof.
Removing these classes from our libraries, we
get a percent error of about 6.8%. This is very
good.

V. CONCLUSION

There are some benefits and drawbacks
of using k-means clustering over averaging
multiple user selections. These effects come
from the different perspectives of the computer
and the user.

This algorithm can be performed with
little help from a user. All the user must do is
determine which endmember each cluster
represents. The user can then make sense of the
abundance vector that is produced in unmixing.

One drawback is the performance. As
we can see from our results section, some of the
endmembers in our k-means clustering library
were vastly different from the averaged
hand-selection library. This is more noticeable
with some materials than others, but is still a
major issue with the reliability of this algorithm.

Also, the classes are not based on the
user’s idea of material, but rather the algorithm’s
evaluation of which pixels are most similar. This
works well for the most part. However, the
signal the algorithm generates may be biased
away from the true mean of the material that the
user wants. This is because a cluster may include
relatively similar materials that are not the same.
Adjusting the number of clusters and selecting
the most representative clusters for the class of
material may help, but that requires more
supervision from a user.



